
USA ISEC AD-A268 378
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

SAMeDL:
Technical Report Appendix F -

DTT C. User's Guide Part 1 -
D- ,T E: INFORMIX

Sift 1219930
A'

ASQB-GI-92-019

September 1992

This document hag•u een approved
fox public rilee ,rand Sale; itsdim•ribution is uniimitc-d.

93-18868 -

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
0MB No. 070"-188REPORT DOCUMENTATION PAGE Exp. Date: Jun 30. 1986

1Ia. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE N/A

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)
__N/A

6c. ADDRESS (Cfty, State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

N/A
8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (It applicable)

Software Technology Branch, ARL AMSRL-CI-CD
80. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta, GA 30332-0800

11. TITLE (include Security Classification)

SAMeDL: Technical Report Appendix F - User's Guide Part 1 - Informix

12. PERSONAL AUTHOR(S)

MS. Deb Waterman

13a. TYPE OF REPORT 13b. TIME COVERED 1,4. DATE OF REPORT (Year, Month, Dayi 15. PAGE COUNT

Technical Paper FROM Apr 91 TO Sept 92 Sept 15, 1992 50
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Ada Database Access, SAMeDL, Ada extension mod-
ule, SQL

19. ABSTRACT (Continue on reverse iN necessary and Identify by block number)

This report details the research efforts into the SQL Ada Module Data-
base Description Language (SAMeDL). Four compilers are presented
(Oracle, Informix, XDB, and Sybase) that allow Ada application programs
to access database using a standard SQL query language. Copies of the
compiler can be obtained from the DoD Ada Joint Program Office
703/614-0209.

20. DISTRIBUTION/AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[0 UNCLASSIFIEDIUNUMITEDD- SAME AS RPT. [OTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL '22b. TELEPHONE(inriude Area Codol 22c. OFFICE SYMBOL

LTC David S. Stevens (404) 894-3110 AMSRL-CI-CD
DD FORM 1473, 64 MAR 83 APR edition may be used unt exhausted.

ANl ther edItlone we obeolete. SECURITY CLASSIFIC&ATION OF THIS PAEA

This research was performed by Statistica Inc., contract number DAKF11-91-
C-0035, for the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of
the U. S. Army Information Systems Engineering Command (USAISEC). This final
report discusses a set of SAMeDL compilers and work enviornment that were devel-
oped during the contract. Request for copies of the compiler can be obtained from
the DoD Ada Joint Program Office, 703/614/0209. This research report is not to
construed as an official Army or DoD Position, unless so designated by other
authorized documents. Material included herein is approved for public release,
distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Racine, Chief Oames D. Gantt, Ph.D.
Computer and Information Director
Systems Division AIRMICS

SAMeDL Development Environment

User Manual

(Informix/386PC/Interactive UNIX/Alsys)

Acce' iot For

NTIS CP.t.^,l

Su. .J-,.: -DTIC QUALITY INSPEMC S
J, :4?,.. O ,........L.LLZL

B y

DI.t ib,!tio,i

Avail a,,dýO
Dist Special

inwfnmet-ics, Inc.

Document IR-VA-012-1
Date 01-September- 1992

Published by
Intermeurics, Inc.

733 Concord Avenue, Cambridge, Massachusetts 02138

Copyright (c) 1992 by Intermetrics, Inc.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
under the clause at DFARS 252.227-7013 (Oct. 1988).

Table Of Contents

Chapter 1 About This Manual 1
1.1 Purpose .. 1
1.2 Organization ... 1
1.3 Syntax Conventions ... 2
1.4 References ... 2

Chapter 2 SDE Overview .. 5
2.1 The SDE SAMeDL Compiler ... 5
2.2 The SDE Module Manager .. 6

Chapter 3 SDE Library File System 7
3.1 Overview Of SDE Libraries ... 7
3.2 Core Library Files .. 8
3.3 Modules and Interface Files .. 10
3.4 Miscellaneous Temporary Files .. 10
3.5 Standard SAMeDL Modules and Ada Support Packages 11

Chapter 4 Getting Started With SDE ...- 13
4.1 Creating A Database ... 13
4.2 Creating An SDE Library ... 13
4.3 Compiling A SAMeDL Source File .. 14
4.4 Creating An Ada Application Program ... 17

Chapter 5 Building Ada/SQL Interfaces With SAMeDL ---------------------- 23
5.1 Overview Of The SAMeDL Compiler ... 23
5.2 SAMeDL Compiler Invocation ... 23
5.3 Using the Compiler-Generated Interface 24
5.4 Compiler Directives ... 25

5.4.1 Reference Directive .. 26
5.4.2 Owner Directive ... 27

Chapter 6 Implementation Dependent Features ---- 29
6.1 SAMeDL Language Limitations Under Informix 29
6.2 SAMeDL Extensions For Informix .. 29
6.3 Troubleshooting Common System Errors 30

Chapter 7 Tool Limitationst 31
7.1 SAMeDL Compiler Limitations ... 31
7.2 SDE Module Manager Limitations ... 31

Chapter 8 SDE Command Reference Manual Pages -. 33
8.1 samedl ... 34
8.2 sde.cleanlib ... 36
8.3 sde.creatar .. 37
8.4 sde.creatlib .. 38
8.5 sde.ls ... 39
8.6 sde.mkscript ... 41
8.7 sde.purge .. 43
8.8 sde.rm .. 44
8.9 sde.rmlib ... 45

Index _.............n7

Chapter 1 - About This Manual

Chapter 1 About This Manual

1.1 Purpose

The purpose of this manual is to describe the features of the Intermetrics' SAMeDL Development
Environment (SDE) for the Informix Database Management System on the 386PC platform with
Interactive UNIX and Alsys Ada. The language supported is defined in the SAMeDL Language
Reference Manual [LRM]. This user's manual is not intended to be a language tutorial for
SAMeDL. In addition, it is assumed that you have an underlying working knowledge of
Informix [Informix] and the Ada standard [Ada].

1.2 Organization

The organization of this document is as follows:

"* Chapter 2, SDE Overview, briefly describes the SDE components, what each
component is used for, and how the components relate to each other.

"• Chapter 3, SDE Library File System, contains an overview of libraries and how SDE
uses them.

"• Chapter 4, Getting Started With SDE, demonstrates a simple scenario, providing
enough information for users to get started developing Ada/SQL interfaces with
SAMeDL.

" Chapter 5, Building AdalSQL Interfaces With SAMeDL, provides detailed information
on how to generate Ada/SQL interfaces using the SAMeDL compiler, and also outlines
the procedures that should be followed for including generated interfaces in an Ada
application program.

"* Chapter 6, Implementation Dependent Features, discusses SAMeDL features which are
dependent on the Informix DBMS implementation.

"• Chapter 7, Tool Limitations, outlines general restrictions and tool limitations imposed
by the current release of the SAMeDL Development Environment for
Informix/386PC/Interactive UNIX/Alsys.

"* Chapter 8, SDE Command Reference Manual Pages, contains a detailed reference for
each command in SDE.

Intermetrics, Inc.

SAMeDL Development Environment - User Manual

1.3 Syntax Conventions

The following explains the notational conventions used in SDE command syntax throughout this
document:

xyz Items expressed in lower-case italic letters are used to represent user-
supplied names. You should substitute an appropriate value. For example,

pa thname

would mean that you should specify the text that represents a file or
directory pathname.

[] Brackets are used to denote items that are optional. For example,

sde. cleanlib [pathnamel

means that you may specify the command with or without supplying a
pathname.

An ellipsis indicates that you may optionally repeat the preceding item one
or more times. For example,

modulename -

means that a series of module names can follow the one listed.

Unless otherwise noted, you may specify options on a SDE command in any order. Also, option
keywords are not case sensitive and may be truncated as long as the resulting abbreviation is
unambiguous. For example, the following two commands are equivalent:

sde.ls -1 my-library -v my..ef-module
sde.ls -Verbose -Library my-library my_def_;module

1.4 References

[Ada] Reference Manual for the Ada Programming Language, Ada Joint Program
Office, 1983.

[AdaRef] FirstAda Ada Software Engineering Environment: Application Developer's
Guide and Appendix F version 4.4, Alsys, Inc, 1990.

[Informix) Informix-OnLine Administrator's Guide, Informix Software, Inc., 1990.
Part No. 000-7051.

[InfESQLJ Informix-ESQL/C Programmer's Manual, Informix Software, Inc., 1990.
Pan No. 000-7053.

2 Intermetrics, Inc.

Chapter - About This Manual

[LRM] SAMeDL Language Reference Manual, Intermetrics, Inc., IR-VA-0 11-1, 07
July 1992.

[SAMEGuide] Guidelines for the Use of the SAME, Marc Graham: Software
Engineering Institute/Carnegie Mellon University, Technical Report CMU/SEI-89-TR-
16, May 1989.

[SDEInst] SAMeDL Development Environment Installation Guide, Intermetrics, Inc.,
IR-VA-026-2, 01 September 1992.

Intermetrics, Inc. 3

Chapter 2 - SDE Overview

Chapter 2 SDE Overview

The SAMeDL Development Environment (SDE) provides you with a software environment for
developing Ada/SQL interfaces through the use of SAMeDL. The SDE toolset consists of a
compiler, which processes SAMeDL source files to generate Ada/SQL interfaces, and the
Module Manager, which assists you with SDE library management and other facets of interface
development.

The SDE toolset includes the following:

samedl invoke the SAMeDL compiler
sde.deanlib reinitialize an SDE library
sde.creatar create a library archive file for compiled concrete modules
sde.creatlib create an SDE library
sde.ls list compiled SAMeDL modules
sde.mkscript generate an Ada compilation script file for an interface file
sde.purge remove out of date files from an SDE library
sde.rm remove a SAMeDL module from an SDE library
sde.rmlib remove an SDE library

2.1 The SDE SAMeDL Compiler

The SAMeDL compiler processes SAMeDL source files and generates interface files
representing the prescribed Ada/SQL interface.

Like an Ada compiler which deals with compilation units, the SAMeDL compiler works with
modules, which are the smallest pieces of code that can be successfully compiled and shared. A
SAMeDL source file may consist of one or more modules.

In SAMeDL, there are three types of modules. A module may be either a definitional module
containing shared definitions, a schema module containing table, view, and privilege definitions,
or an abstract module containing local definitions and procedure/cursor declarations.

The SAMeDL compiler will generate interface files for each definition module (in the form of an
Ada package specification/body pair) and each abstract module (in the form of a layered
interface consisting of an Ada package specification/body pair and an object code file generated
from a C with embedded SQL file). No interface files are generated for schema modules. The
generated interface files collectively represent the Ada/SQL interface you would use in your Ada
application program.

SAMeDL is analogous to Ada in that it also has the concept of separate compilation. SAMeDL
modules may use (through the use of context clauses) information contained in other modules
that you have previously compiled. All separate compilation information is kept in ordinary host
file system directories and files. These files/directories along with any generated interface files
are organized into an SDE library, which again is somewhat similar to the development library
concept used by most Ada development systems.

As in the case of most language compilers, the SAMeDL compiler will perform the appropriate
syntactic and semantic error checking. All error messages are reported to the standard output
device. You may also optionally specify that a source listing file be generated in which case, if
you had any errors, the errors would be interleaved with the SAMeDL source code in your
listing.

Intermetrics, Inc. S

SAMeDL Development Environment - User Manual

2.2 The SDE Module Manager

The SDE Module Manager is a set of tools which you may use to assist with SDE library
management and other facets of interface development. These tools include sde.cleanlib,
sde.creatar, sde.creatlib, sdeis, sde.mkscript, sde.purge, sde.rm, and sde.rmlib.

sde.cleanlib

sde.cleanlib will allow you to empty an existing SDE library of all compilation information.
The command will re-initialize the names.dbe and samedl.dat files and remove the remaining
contents of the samedl.lib subdirectory.

sde.creatar

sde.creatar is usetul for creating and updating a library archive file that contains the object code
files generated from the C with embedded SQL for abstract modules. The object code files can
then more easily be included as part of the Ada link step for the application program (as opposed
to specifying each of the object code files individually in the link step).

sde.creatlib

sde.creatlib is used to create and initialize a new SDE library. It creates a directory named
samedl.lib in the library directory, and creates the files samedl.dat and names.dbe in the
samedl.lib directory.

sde.ls

sde.Is provides you with a list of the SAMeDL modules compiled in an SDE library. Useful is
the interface option which will provide information concerning the interface files generated for a
module.

sde.mkscript

sde.mkscript will create a template for performing the Ada compilation of the generated Ada
interface files (and the units they depend on) for the definitional or abstract modules.

sde.purge

sde.purge will remove all out of date/unused files from an SDE library. These files include
temporary files (e.g., those used during compilation) or interface files that have been put out of
date due to recompilation of the associated SAMeDL modules. In addition, sde.purge will also
remove the library state information backup file samedl.daLback.

sde.rm

sde.rm allows you to remove all information and related interface files associated with modules
compiled in the SDElibrpry.

sde.rmlib

You use sdermlib to remove an SDE library and all of the information it contains.

6 Intermetrics, Inc.

Chapter 3- SDE Libraiy File System

Chapter 3 SDE Library File System

This chapter contains an overview of SDE libraries and the files that comprise them.

3.1 Overview Of SDE Libraries

An SDE library is a host file system directory which acts as a central database of SAMeDL
compilation information and related generated interfaces.

SDE Ltbrary Contents

sumedl.1tb

.sn fIles . e fries

7sme "c Isemedl.Iunp

-C f lies. cam fIles

Figure 3.1: Contents of an SDE Library

Every directory representing an SDE library will contain the directory samedl.lib. samediJib in
turn contains the files namesdbe, samedl.dat, and samedl.daLback, and various files ending
with smne, .ec, .0, and .a extensions. In addition, there are a variety of temporary files that may
appear under samedi.lib: samedl.Iock, samedl.tmp, and files ending with .c and .com
extensions.

Note: in general, it is not advisable for you to modify or place any files in the directory
sainedijib that are not otherwise generated by SDE. In particular, sde.rmlib and sde.deanlib
do the equivalent of a UNIX "rm -r samedlIib" as part of their operation.

Intermetrics, Inc. 7

SAMeDL Development Environment - User Manual

3.2 Core Library Files

When you initially create a new SDE library (via sde.creatlib) or "clean" an existing SDE library
(via sde.cleanlib), the directory samedl.lib will only contain the following core library files:
samedl.dat and names.dbe. In certain circumstances, a backup file for samedl.dat named
samedl.dat.back will also be present

samedl.dat

samedO.dat is the net disk data file for the library. It contains a series of records, each record
containing the data for a single node in the internal representation of the dependency tree. The
information in the file is in text format, that can be read/written by the SDE module manager and
the SAMeDL compiler.

The internal representation of the dependency information is tree-like. Each node in the tree
represents a file in the SAMeDL system, and has information about all nodes that are dependent
on it and nodes that it depends on (called CaredAboutBy and CaresAbout arcs respectively).
Each node also contains the time it was created, the external source file it was created from, the
name of the source file saved in the library and the name of the library file that the generated
code resides in.

Nodes are given node numbers that uniquely identify them. This practice facilitates saving the
tree to the designated disk file and reading it back because pointers do not need to be included in
the disk file. It also facilitates the use of uniform data structures for the internal representation
because variable length records do not need to be used. Instead, lists are maintained off each
node that contain the node numbers of the nodes that the node depends upon, or is depended
upon by.

The records in the disk data have the following fields:

Node Number number of the node that specifies the unit

Node Type the type of file this node points to

Unit Name name of the compiled unit

Time Entered time the unit was entered into the library

Library File name of file saved in library

External File pathname of file that the node was generated from

Cares About Arc Num number of cares about arcs from this node

Cares About Arc List list of cares about arcs from this node

Cared About By Arc Num number of care about arcs to this node

Cared About By Arc List list of care about arcs to this node

The records in the disk data file are written out in text form, one after the other with a special
character separating each node.

8 Intermetr'cs, Inc.

Chapter 3 - SDE L.brary File System

samedl.daLback

The samedl.dat.back file is a backup copy of the samedl.dat file that the SAMeDL compiler
and the sde.rm command make before they change the samedl.dat file. samedl.dat.back will
contain the prior library state information and thus will allow you to undo the effects of the last
samedl or sde.rm command (provided that a sde.purge command has not been since executed;
see below). In order to restore the library back to its prior state, you should go to the samedl.lib
directory corresponding to your SDE library, remove the existing samedl.dat file, and rename
(using the UNIX my command for example) samedl.daLback to samedl.dat. Note that because
of the semantics of the sde.purge command, an SDE library may not be restored if the library
has been purged.

names.dbe

The names.dbe file is a text file that maintains two integer counters used internally by the
compiler to keep track of procedures and variables across separate compilations.

Intermetrics, Inc. 9

SAMeDL Development Environment - User Manual

3.3 Modules and Interface Files

When a SAMeDL module is compiled into an SDE library, depending on the type of module, the
com'-;ler will generate a series of files in the samedL.lib directory. These are as follows:

Module Type File Name Description

Definitional Module Dxxxxx.sme Text file containing SAMeDL source code
representing the definitional module

Pxxxxx.a Generated Ada package specification file

B_xxxxx.a Generated Ada package body file

Schema Module Sxxxxx.sme Text file containing SAMeDL source code
representing the schema module

Abstract Module Axxxxx.sme Text file containing SAMeDL source code
representing the abstract module

P_xxxxx_.a Generated Ada package specification file

B_xxxxx.a Generated Ada package body file

E_xxxxx.ec Generated C w/ embedded SQL (CIESQL)
file

E_xxxxx.o Object code for the expanded/compiled
C/ESQL file

where xxxxx denotes a unique integer.

3.4 Miscellaneous Temporary Files

Occasionally during the normal operation of running the SAMeDL compiler and the Module
Manager utility tools, temporary files may be generated in the samedl.lib directory. A brief
explanation of these files follow.

samedl.lock

This file is present if someone is currently operating in the SDE library and therefore has it
locked. If you attempt to operate within the library and it is already locked, you will be notified
by an appropriate informative message and the operation will be terminated.

Occasionally you will be notified that the library is locked even though, in reality, nobody is
currently using the library. This would typically occur if you abnormally terminate the compiler

10 Intermetrics, Inc.

Chapter 3 - SDE Library File System

or an SDE command causing the lock file to not be correctly removed (and thereby preventing
yourself and others from using the library). If you are sure this is the case, you can correct the
problem easily by removing samedl.lock from the library's samedl.lib directory.

samedl.tmp

This file is a temporary text file used by the compiler during the update of an SDE library.

.c Files

Files whose names take the form E xxxxx.c are files which contain the expanded C source code
output of the C/ESQL precompiler. It is this file that is compiled (transparent to the user by the
SAMeDL compiler) by the C compiler to produce the .o files. xxxxx (see above) is a unique
integer and will have the same value as the corresponding Exxxxx.ec file.

.com Files

Files whose names take the form xyz.com are UNIX command (or script) files written in the
UNIX C-shell (csh) language. This command file is generated and used by the SAMeDL
compiler to (transparently) precompile the .ec files and C compile the .c files associated with
every abstract module in the SAMeDL input source file xyz.sme.

3.5 Standard SAMeDL Modules and Ada Support Packages

As documented in [LRM] Appendices A, B, and C, there are a number of standard SAMeDL
modules and Ada support packages defined as part of SAMeDL. These include the following:

"• The SAMeDL modules SAMeDL=Standard and SAMeDL=System

"* The Ada packages SQL Standard, SQL Database Error Pkg, SQL Boolean Pkg,
SQL Int Pkg, SQL Siinllint Pkg, SQL Real Pig, SQL Double-Predsion-Pkg,
SQL CharlPkg, andSQL EnimerationlPkg. -

The standard SAMeDL modules contain predefmed elements such as predefined base domain
declarations and database specific constants. These modules may be used in SAMeDL code you
develop just as you would any other SAMeDL module by bringing them into context through the
use of context clauses. Note however that before you can use these modules, they must have
been previously compiled by the SAMeDL compiler into your SAMeDL library. This is
discussed further in Section 5.2 of this document.

Because the interfaces generated by the SAMeDL compiler depend on the standard Ada support
packages, you must compile the standard packages into an Ada development library that can be
used by your interfaces and application programs. For further information on how to accomplish
this, please refer to Section 5.3.

Intermetrics, Inc. 11

Chapter 4 - Getting Started With SDE

Chapter 4 Getting Started With SDE
This chapter presents some basic scenarios for using the SAMeDL Development Environment:
creating an SDE library, compiling a SAMeDL source file, and creating an Ada application
program which uses the SAMeDL compiler generated modules to interface with the database
environment. The scenarios have intentionally been kept simple; details are deferred to later
sections of this manual.

Suppose you want to design an Ada application program which interacts with a database
environment. The basic steps are:

I. Create the Informix Database that the application will access, if it does not already

exist.

2. Create an SDE library for the database.

3. Prepare a SAMeDL source input file and compile it into the SDE library.

4. Write the Ada application program which uses the SAMeDL standard packages and the
Ada definition/abstract modules generated by the SAMeDL compiler.

5. Compile and link the Ada application program.

4.1 Creating A Database

The initial creation and maintenance of a Informix database is beyond the scope of SAMeDL.
As described in the Informix system administration manual [Informix], the Database
Administrator will create and maintain databases through the use of Informix DBMS commands.
Typical tasks would include:

• Create a Database

• Create the Database files(tables) and fields(columns) for the Database.

* Assign the appropriate permissions to the database to allow application connection
through the Informix HLI. This step includes adding login ids and users as necessary to
the database via database administrator procedures.

a Set any default values and/or integrity constraints on table fields.

4.2 Creating An SDE Library

Once an appropriate database exists, you need to create an SDE library before you can compile
SAMeDL source code. The SDE library will be used by the SAMeDL compiler to store
information necessary for separate compilation and also to act as a repository for the interface
files that are generated.

You create a new SDE library with the sde.creatlib command. This command optionally takes
one argument which is the directory name for the library; if you do not specify an argument, then
the library will be generated in your current working directory.

Intermetrics, Inc. 13

SA•eL Development Environment - User Manual

For example, to create an SDE library in the directory /usr/same/Mmple/samelib, you would
issue the following command:

%sde.creatlib /usr/same/example/samelib

In order to create the library, it is important that you have have appropriate read/write privileges

for the library directory.

4.3 Compiling A SAMeDL Source File

The next step is to prepare a SAMeDL source file (with the text editor of your choice) and
compile it into the SDE Library.

Before you can use the compiler however, you must properly set the environment variable
INFORMIXDJR to contain the path name to the Informix RDBMS installation directory (e.g.,
/usr/informix).

Consider the following description which is assumed to be in the file bank.sme. This example
contains three modules: the definition module samplemod, the schema module recdb, and the
abstract module recdml. Furthermore, the example depends on the definition module
samedl standard which must have been previously compiled into your SAMeDL library.

-- !reference samedl_standard
with samedl-standard; use samedlstandard;
definition module SampleMod is

-- Member Information
domain Member_Name is new SQL_CHAR Not Null (LENGTH => 30);
domain SSN is new SQL_CHAR Not Null (LENGTH => 9);
domain Age is new SQL_SMALLINT (FIRST => 1, LAST => 199.0);

enumeration SexEnum is (F, M);
domain Sex is new SQLENUMERATIONASCHAR

ENUMERATION => SexEnum,
WIDTH => 1,
MAP =>(m=>'B', f=>'A'));

domain Phone is new SQLCHAR (LENGTH => 8);
domain Street is new SQLCHAR (LENGTH => 30);
domain City is new SQLCHAR (LENGTH => 15);

domain County is new SQL_CHAR Not Null (LENGTH => 2);

domain ClubNumber is new SQLSMALLINT Not Null;

exception Record_NotFound;

14 Intermetrics, Inc.

Chat 4- GeUlnR Strted Wft SDE

enumeration FailType is (Not-LoggedIn, SQLOk, SQLFail);

status fetchjap named isfound uses Failtype is
(-999 .. -300 => SQLFail,

-299, -298 => NotLoggedIn,
0 => SQLOk,

100 => raise samplemod.record-notfound);

end SampleMod;

with SampleMod; use SampleMod;
schema module RecDB is

table Members is
MemberName not null : MemberName,
MemberSSN not null : SSN,
ClubNumber not null : Club_Number,
MemberAge : Age,
MemberSex : Sex,
MemberPhone : Phone,
MemberStreet : Street,
MemberCity : City,
MemberCnty not null : County

end Members;

end RecDB;

with SampleMod; use SampleMod;
extended abstract module RecDl)L is

authorization RecDB

record MemberRec is
MemberName : Member_Name;
MemberSSN : SSN;
ClubNumber : ClubNumber;
MemberAge : Age;
MemberSex : Sex;
MemberPhone : Phone;
MemberStreet : Street;
MemberCity : City;
MemberCnty : County;

end;

procedure CommitWork is
comnit work;

extended procedure connectRecdb is
connect ' recdb';

procedure MemberInsert is
insert into RecDB.Members
from Row : MemberRec VALUES;

cursor MemberSelect (ReqMemberSSN SSN) for
select MemberName,

Intermetrics, Inc. 15

SAMeDL Development Environment - User Manual

MemberSSN,
ClubNumber,
MemberAge,
MemberSex,
MemberPhone,
MemberStreet,
MemberCity,
MemberCnty

from RecDB.tMembers
where RecDB.Members.MemberSSN = ReqMemberSSN;

is
procedure FetchIt is

fetch into Row : MemberRec
status Fetch_Map named Rec_Status;

end MemberSelect;

end RecDML;

The SAMeDL compiler is invoked with the command samedi. For example, to compile
bank.sme into the SDE library created above, you should issue the following command:

%samedl -library /usr/same/example/samelib bank.sme

The -library qualifier is used to specify the name of an existing SDE library; this is optional, and
if not given, the library will be assumed to exist in your current working directory. You must
give the host filename of the SAMeDL input source file; this filename must end with the
characters ,sme. For more information on invoking the SAMeDL compiler, refer to Chapter 5 of
this manual.

The SAMeDL compiler will generate interface files for each definition module (an Ada package
specification/body pair) and each abstract module (an Ada package specification/body pair, a C
with embedded SQL file, and an object code file). No interface files are generated for schema
modules. All interface files will be placed in the samedl.lib directory contained within the
library directory. Thus, for the sample compiler invocation above, you can find all interface files
in the directory /usr/same/examplelsamelib/samedl.lib.

To determine what the names of the generated interface files for the modules samplemod and

recdb, you can use the sde.is command. For example:

%sde.ls -1 /usr/same/example/samelib -i samplemod recdml

samplemod
Interface Files:

/usr/same/example/samelib/samedl.lib/P_2_.a (ADASPEC)
/usr/same/example/samelib/samedl. lib/B_2.a (ADABODY)

recdml
Interface Files:

/usr/same/exanple/samelib/samedl.lib/P_3_.a (ADASPEC)
/usr/same/example/samelib/samedl. lib/B_3 .a (ADABODY)
/usrlsame/examplelsamelib/samedl lib/E_1 .ec (EKBEDDEDC)
/usr/same/example/samelib/samedl .lib/El .o (OBJECTFILE)

16 Intermetrics, Inc.

Chapter 4 - Geting Started With SDE

For more information concerning the naming conventions used for SDE library files, see Section
3.3 of this document.

4.4 Creating An Ada Application Program

The Ada files produced by the SAMeDL compiler along with the SAMeDL standard packages
provide an abstract Ada interface to the database which may be utilized by an Ada application
program. So before you can build your application, you first need to compile these files into an
appropriate Ada library that will be visible to your Ada application development library.

The SAMeDL standard packages are provided as part of SDE. To determine the location of
these files at your site, please refer to the SDE installation notes or ask your system
administrator.

To generate an "invoke" command file for compiling the Ada interface files contained in your
SAMeDL library into your Ada library, you may use the sde.mkscript command. For example:

%sde.mkscript -1 /usr/same/example/samelib -o my-script samplemod recdml
%more my-script
Compile (Source => /usr/same/example/samelib/samedl.lib/P_1-.a');
Compile (Source => /usr/same/example/samelib/samedl.lib/B_l.a");
Compile (Source => "/usr/same/example/samelib/samedl.lib/P_2_.a");
Compile (Source => "/usr/same/example/samelib/samedl.lib/B_2.a");
Compile (Source => */usr/same/example/samelib/samedl.lib/P_3-.a");
Compile (Source => "/usr/same/example/samelib/samedl.lib/B_3.a');

In this example, the sde.mkscript command indicates that 3 sets of Ada package spec/body pairs
need to be compiled, even though the initial compilation of the file containing samplemod and
recdml generated only 2 Ada packages spec/body pairs. The reason for this discrepancy is that
the definitional module samplemod references the previously-compiled module
samedl standard, which contains the definitions of the base domains SQL_CHAR, SQLJINT,
etc. Th"e reference to samedi standard is achieved via a reference directive. For more
information on compiler directiv;es, see Section 5.4 of this manual.

To generate a C-language archive including all of the C object files pertinent to your Ada

application you may use the sde.creatar command. For example:

%sde.creatar crecdml.a recdml

The command given above will create a C-language archive named c recdml.a which contains
the C object code necessary to link the Ada-Informix interface generated by the SAMeDL
abstract module recdml to an Ada application, such as the one presented below.

Using the bank example presented above, suppose that you need a utility that will allow bank
tellers access to profile information for a customer. You could accomplish this with the
following Ada program:

with TEXTIO;
use TEXTIO;
with SAMPLEMOD;
with RECDML;
procedure MAIN is

Intermetrics, Inc. 17

SA~eDL Development Environment - User Manual

-- User 1/O information
IN...BUFFER :STRING(l 80);
LAST :NATURAL;
OPT :INTEGER;

- - Members Row Record
ROW :RECDKL. MEERP.EC;
IROW :RECID(IJ.MD(BERREC;

procedure DO_..INSERT is
begin

PUT-LINE(**** Function to Insert rows ~)
NEW-LINE;
loop

IN-..BUFFER :=(others =>*
PUT(E~nter Member SSN (9 char max) or -1 for MENU>)

GETLINE (INCUFFER, LAST);
NEWLINE;
exit when (INBUFFER~li. LAST) = *1)

IROW.MEMBERSSN :=SAMPLEWOD.SSNNOTNULL(IN-BUFFER(1 9));

IN-..BUFFER :=(others =>1)
PUT(*Enter Member Name (30 char max)> in);

GETLINE (IN...BUFFER, LAST);
NEWLINE;
IROW.MDEBERNAME-

SAMPLE(OD.MEMBER_NAIG_NOT_NULL (IBUFFER (1 30));

INBUFFER :=(others => 1)
PUT(*Enter Club Number (Smallint)> in);

GETLINE (IN-BUFFER, LAST);
NEW-LINE;
IROW.CLUBNUMBER

SAMPLD4OD. CLUB_..NUMBER_.NOT_..NULL VALUE(
INBUFFER(1. LAST));

IN-..BUFFER := (others => 1 1);
PUT(OEnter Member Age (Smallint) or \\ for NULL> i)

GET_LINE(CIN...BUFFER, LAST.);
NEWLINE;
if (IN...BUFFER(1 . 2) a *\\) then

SAMPLE24OD.AGE...OPS.ASSIGN(CIROW .MDIBERAGE,
SAMPLEMOD.NLL,_.SQLSMALLINT);

eleSAMPLE4OD.AGEOPS.ASSIGN (IROW .MEMBERAGE,

SAMPLEMOD. AGEOPS. WITH-NULL(
SAMPLI94OD.AGE...NOT...NULL'VALUE(

IN...BUFFERU . LAST)));
end if;

INBUFFER :=(others => 1);

PUT(E~nter Member Sex CM/F) or \\ for NULL>u)
GETLINE (IN-BUFFERD LAST);
NEW-LINE;
if (IN-.)UFFER(l .. 2) =\)then

SANPLEOD. ASSIGN (IROW .MEERSEX,
SAMPLMIOD.NULL-.SQL....DUMERATION);

18 Intermetrics, Inc.

Chapigr 4 - Getting Started With SDE

else
SAMPLDEOD ASSIGN (IROW .MD(ERSEX.
SAMPLDEOD .WITHLNULL(
SAMPLE4OD.SEXNOTYILL VALUE(
INBUFFER (1 LAST)))

end if;

11NBUFFER :=(others => 1
PUT(wEnter Member Phone (8 chars) or \\ foz NULL> 0);
GETLINE (INBUFFER, LAST);
NEWjINE;
if (IN-.BUFFER(l .. 2) = \i)then

SAMPLEZ4OD ASSIGN (IROW.MEQERPHONE,
SAMPLEMOD NUI&-SQLSCHAR);

else
SAMPLE(OD .ASSIGN (IROW .HEMBERPHONE,

SAMPLEMOD. PHONEOPS .WITH-NULL(
SAMPLEM4OD. PHONENOTNULL (IN...BUFFER (1 8)));

end if;

INBUFFER :=(others => 1
PUT(OEnter Member Street (30 char max) or \\for NULL> i)

GETLINE (IN-BUFFER, LAST);
NEWLINE;
if (IN...BUFFER(1 . 2) = 0\\-) then

SAMPLEMO0D.ASSIGN (IROW .MD4BERSTREET,
SAMPLE4OD.NULL...SQLSCHAR);

else
SAMPLEMOD.ASSIGN (IROW .MEERSTREET,

SAMPLEZ4OD. STREET_OPS.WITHNULL(
SAMPLEHOD. STREETNOTNULL (INBUFFER (1 30))));

end if;

INBUFFER := (others =>
PUT(uEnter Member City (15 char max) or \\for NULL>)
GETLINE (II4LEUFFER, LAST);
NEW_LINE;
if (IN-BUFFER(l .. 2) = "\\O) then

SAMPLEMOD.ASSIGN (IROW .MEERCITY,
SAMPLEKOD.NULLSQL_.CHAR);

eleSAMPLEMOD.ASSIGN (IROW.1EMBERCITY,
SAMPLEMOD.CITY_OPS.WITHNULL(

SAMPLEMOD.CITYNOTNULL(IN_BUFFER(i . 15)));
end if;

IN-..BUFFER := (others =>
PUT(mEnter Member Cnty (2 char max)> in);

GETLINE (IN-.BUFFER * LAST);
NEWLINE;
IROW .MEMEERCNTY

SAMPLEMOD. COUNTY_NOT_NULL (IN...BUFFER (1 2));

RECDL .HERINSERT (IROW);
RECIR4L .CONMITWORK;

end loop;

Iraermetrcs, Inc. 19

SAMeDL Development Environment - User Manual

exception
when others =>

PUT_LINE(N*** Error: could not do Insert *)

end DOINSERT;

procedure DO-SELECT is
STATUS :SAMPLEMOD FAILTYPE;

begin
PUT...LINE(N*** Function to Select rows *)

NEW-LINE;
loop

IN-BUFFER := (others =>)

PUT(*Enter Member SSN (9) or -1 for MENU> 0);
GET_ýLINE C IICUFFER, LAST);
NEW._LINE;
exit when (INBUFFER(1 .. LAST)
RECOL. MDEBERSELECT .OPEN (SAMPLDEOD. SSNNOTJNULL(

INB..UFFER(l .. 9)));

begin
loop

RECDML. EMERSELECT. FETCH IT (ROW. STATUS);

PUT_LINE(-NAMiE: - & STRING(ROW.MDIBERNAME) a&
OSSN: "& STRING(ROW.MEMBERSSN)& &
'CLUB: "&
SAMPLMDEODCLUENUMBER_.NOTNULL IMAGE(

ROW. CLUENUMBER));

PUT(OAGE: 0);
if not (SAMPLEMOD. ISNUKLL (ROW .MDEMERAGE)) then

PUT (SAMPLE4OD .AGE_.NOT_NULL 'IMAGE(
SAMPLDEOD. AGE...OPS .WITHOUTNULL(

ROW. EMERAGE));
end if;
SETCOL(l3);

PUT(*SEX: ");
if not (sAmpLEDOD. IS..NuLL (ROW. MIERSEX)) then

PUT (SAMPLUEOD . SELNOTJMIULL'IMAGE(
SAMPLDEOD .WITHOUTWLL (ROW .EMERSEX)));

end if;
NEW_.LINE;

PUT(*PHONE:)
if not (SAMPLEMOD. ISJIULL (ROW. MEMBERPHONE)) then

PUT (STRING (SAMPLD(OD. PHONE_OPS .WITHOUT_NULL(

.RO1W .M9BERPHONE)))
end if;
NEWLINE;

PUT(OSTREET:)
if not (SAMPLDEOD. IS-JIUL(ROW. IM4ERSTREET) I then

PUT (STRING (SAMPLUID. STREET...OPS .WITHOUT...NUL

ROW. -DE3ERTRM));
end if;
NEW-.LINE;

20 Intermetric, InC.

PUTOITY:Chapter
4 - Getting Stared With SDE

if not (SAMPLEKOD. IS...NULL (ROW .lE4BERCITY)) then
PUT (STRING (SAMPLEMOD. CITYOPS .WITHOUTJIULL(

ROW.MEMBERCITY));
end if;
SET_COL(26);

PUT..LINEO(*COUNTY: '&STRING (ROW. ME4BERCNTY));
NEWLLINE;

ND{-LINE;
end loop;

exception
when others =>

PUT-LINE (mNo more records found!");
NEW.LINE;

end;

RECDML .M~EMERSELECT .CLOSE;
RECDML. COMMITWORK;

end loop;

exception
when others = -Couldn't find request

PUT...LINE("*** Error: could not do Select **)

end D0.SELECT;

begin
RECDML .CONNECTRECDB;
loop

PUT_LINE("*** Option Menu **)

PUT_LINE(m 0 - Quit');
PUT__LINE(m 1 - Insertu);
PUT_LINE(O 2 - Selecto);
PUT(*Option? > s);

GET_LINE(CINBUFFER, LAST);
NEW_LINE;
OPT : = INTEGER'VALUE (INBUFFERi (1 LAST);

case OPT is
when 0 =>

exit;
when 1 =>

DO_INSERT;
when 2 =>

DO_SELECT;
when others =>

PUT_LINE(nIllegal Choice: a IN-BUFFER~i . LAST));
end case;
NEW_ýLINE(2);

end loop;
end MAIN;

Jnternetrics, Inc. 21

SAMeDL Development Environment - User Manual

Assuming that your Alsys Ada development library is in /usr/same/example/adalib and that the
above Ada program is in the file getprofa, you can compile and link the program by performing
the following steps, which use the file myscript and the archive file c.recdmla described earlier
in this section:

" Compile the SAMeDL Standard Packages into your Ada library (this step may be
omitted if visibility to the SAMeDL Standard Packages has been gained in another
way).

%$SDEPATH/comp_std_pkgs /usr/same/example/adalib

"* Compile the code generated by the SAMeDL compiler into your library, using the
script generated by the sde.mkscript command.

tada
"> default.compile(library=>/usr/same/example/adalib)
"> invoke (file=>myscript)
"> quit

"* Compile your application into the Ada library.

%ada
"> default.compile (library=>/usr/same/example/adalib)
"> compile (sourcez>getprof.ada)
"> quit

0 Generate the executable using the Alsys BIND command. When issuing the BIND
command, include the following arguments in addition to providing values for the
required PROGRAM and LIBRARY parameters [AdaRef]:

(a) SEARCH => the archive file generated by the call to sde.creatar (for this
example, c recdmi.a),
$SNFORMIXDIMRib/libsqI4.a,
$INFORMXDWIRiib/libfesql.a,
/lib/libx.a

" The order of arguments for the MODULES parameter is not significant, but the order of
arguments for the SEARCH parameter is significant. If your application program
requires additional external modules, you may have to reorder the list of external
modules before all references can be adequately resolved. Consult the Alsys Ada
User's Manual for further information.

In the example above, the Unix C-shell (csh) script comp std.pkgs provided with SDE contains
Alsys Ada Compiler commands and is described in Section 5.3 of this document (SDEPATH is
an environment variable which has been set to the path name for the SDE installation directory).

22 Intermetrics, Inc.

Chapter 5 - Building AdalSQL Interfaces With SAMeDL

Chapter 5 Building Ada/SQL Interfaces With SAMeDL

5.1 Overview Of The SAMeDL Compiler

The SAMeDL compiler is used to generate interface files representing an Ada/SQL interface for
your Ada applications. These interface files consist of one or more files containing Ada
packages representing the Ada interface:

"• Each definition module defined in the source input will have an Ada package
specification and a corresponding Ada package body generated.

"• Each abstract module defined in the source input will have an Ada package
specification and a corresponding Ada package body generated.

In addition, for each abstract module a corresponding concrete module will be generated. This
file takes the form of C code with embedded informix SQL statements. Procedures declared
within the file are called by procedures within the abstract module's Ada package body in order
that direct interaction with the database can be handled. Each such file will be preprocessed by
the Informix SQL C preprocessor and the resulting output will be compiled by the C compiler
resulting in a corresponding object code file (a .o file).

The SAMeDL compiler operates within the context of an SDE library. The library maintains
dependency information and other data used by the compiler to perform separate compilation. In
addition, the SDE library acts as a repository for all interface files generated by the SAMeDL
compiler.

5.2 SAMeDL Compiler Invocation

The SAMeDL compiler is invoked with the command samedl. It accepts a series of options and
a single file name as input arguments. Option keywords are not case sensitive and may be
truncated as long as the resulting abbreviation is unambiguous.

Syntax

samedl [options] sourcefile

Options

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

4ist Generate an interleaved listing file

-syntax Check the syntax of the input file without
generating any output files.

samedl executes the SAMeDL compiler and compiles the named SAMeDL source file into the
SDE library directory specified bypathname; if pathname is not specified, then it will default to

Intermetrics, Inc. 23

SAMeDL Development Environment - User Manual

the current working directory. Note that the SDE library must already have been created (via the
sde.creatlib command). The SAMeDL source file name must end with the suffix .smne.

The listing option, when specified, directs the compiler to produce an interleaved listing file.
The listing file will be named <x>.lis where <x> is the base name of the input source file (for
example, a source file named xyz.sme will result in a listing file being named xyzlis). Compiler
diagnostic messages will always be written to standard output, regardless of whether or not -list
is in effect.

The syntax option, when specified, causes the SAMeDL compiler to act as a SAMeDL syntax
checker, generating error messages for syntax and some semantic errors, but no code.

The SAMeDL compiler will generate interface files for each definition module (an Ada package
specification/body pair) and each abstract module (an Ada package specification/body pair, a C
with embedded SQL file, and an object code file). No interface files are generated for schema
modules. All interface files will be placed in the samedl.lib directory contained within the
library directory. For the naming conventions used for interface files, please refer to Section 3.3
in this manual.

As an example, take the following:

%samedl -lib /usr/same/example/samelib -list example.sme

This will compile the SAMeDL description file example.sme into the library
/usr/same/example/samelib and create an interleaved listing file named example.lis in the
current directory. All generated interface files will be placed in the directory
/usr/same/example/samelib/samedl.lib.

Before invoking the SAMeDL Compiler, users should be sure to check that SAMeDL packages
required via reference directives have already been compiled into the SAMeDL library. In
particular, a typical SAMeDL code file will include reference directives for the SAMeDL
definitional modules SAMeDL Standard and SAMeDL System, found in the files
$SDEPATH/STD PKGS/samedi std.sme and $SDEPATH/STD PKGS/samedl sys.sme.
These packages contain definitionsfor system limits and predefined-base domains. Users who
tend to frequently use the predefined base domains should get into the habit of compiling these
files into their SAMeDL libraries at library creation time.

Before you can use the compiler however, you must properly set the environment variable
INFORMIXDIR to contain the path name to the Informix RDBMS installation directory (e.g.,
/usr/informix).

5.3 Using the Compiler-Generated Interface

In order to use the SAMeDL compiler generated Ada/SQL interface, the target Ada application
must be linked with the SAMeDL generated Ada files and object code files, a set of SAMeDL
standard packages (see Section 3.5), a set of Informix Libraries, and a Unix C library.To
facilitate the final steps in building the Ada target application, SDE provides you with a Unix C-
shell script that contains Alsys Ada Compiler commands. This script can be found in the SDE
installation directory and used as an example of how to compile the SAMeDL Standard Packages
your application requires using the Alsys Ada Compiler. It is called compstdpkgs.

The first step in compiling and linking your application is to make the SAMeDL standard
packages visible to your Alsys Ada application library. This can be done by using the

24 lntermetrics, Inc.

Chapter 5 - Buildin, Ada/$QL Interfaces With SAMeDL

comp std pkgs script file found in the SDE installation directory. You may invoke the
comp-stdpkgs by issuing the following command:

%comp_std..pkgs libpath

where libpath is the pathname to the Ada library that the SAMeDL standard packages are to be
compiled into. This script will compile all of the SAMeDL standard packages into your Ada
library. This step needs to be performed once per library, unless the SAMeDL standard packages
have already been made visible to the Ada library in some other way.

Once the standard packages have been compiled into the Ada library, the SAMeDL-generated
Ada packages should be compiled into the library. The SDE command sde.mkscript can be
used to generate a script file for'performing this compilation. Refer to section 8.6 of this
document for instructions and examples.

After the SAMeDL interface code has been compiled into your library, you may use the Alsys
Compile command to compile your application into the library. Once this step has been
completed, you are ready to prepare for linking the Ada-Informix executable.

There are four files which must be linked with your application in order to produce a valid
Sexecutable. Two of the files, namely $INFORMIXDIR/lib/libsql4a and

$INFORMIXDIR/lib/libfesql.a are Informix libraries. One of the files, /lib/libx.a, is an
Interactive Unix C library. And the fourth file is an archive of the pertinent C object code
generated by the SAMeDL compiler and stored in the SAMeDL library. This last file is created
from the SAMeDL library information using the command sde.creatar, described in section 8.3

* of this document.

Your Ada application can be linked easily by following these simple instructions:

0 Generate the executable using the Alsys BIND command. When issuing the BIND
command, include the following arguments in addition to providing values for the
required PROGRAM and LIBRARY parameters [AdaRefi:

(a) SEARCH => the archive file generated by the call to sde.creatar (for this
example, c recdml.a),
$INFORbMXDIR/ib/libsql4.a,
$1NFORMIXIR/lib/iibfesql.a,

* /litibibxa

* The order of arguments for the MODULES parameter is not significant, but the order of
arguments for the SEARCH parameter is significant. If your application program
requires additional external modules, you may have to reorder the list of external
modules before all references can be adequately resolved. Consult the Alsys Ada
User's Manual for further information.

5.4 Compiler Directives

Compiler directives are embedded in SAMeDL source files and are used to indicate special
directions to the compiler outside of the SAMeDL syntax and semantics. The general form of
any directive is:

Intermetrics, Inc. 25

SAMeDL Development Environment - User Manual

-Idirectivename parameterlist

In order for a directive to be recognized, it is important that no white space (i.e., spaces, tabs,
etc.) appear between any of the dashes (-), the bang (!), and the directive-name keyword.

Each directive will be given in its general form, followed by a definition of each term of the
directive, and a description of its use.

5.4.1 Reference Directive

The reference directive allows you flexibility of separate compilation by permitting visibility of
externally declared modules that have been previously compiled. This directive(s) must appear
immediately before the first context clause of a SAMeDL module.

The compiler processes the reference directive by reading the referenced module from the SDE
library currently in context and importing the appropriate symbol information for the referenced
module. Once a reference directive is used for a particular module, then any module appearing
textually after the reference directive may refer to the contents of the referenced module.

Typical use for the reference directive is to gain visibility to the SAMeDL packages
SAMeDLStandard and SAMeDLSystem, which contain the definitional modules for the
predefined base domains and the system limits.

The form : the reference directive is as follows:

-Ireference modulename

The reference keyword must begin immediately following the ! and the entire word must be
included. The keyword is case-insensitive, module_name must reference the name of a
SAMeDL module that has been previously compiled into the SDE library.

Note: This directive m=s be placed before the context clauses of a module declaration; placing
it between the start of-a module declaration and the corresponding END will cause a fatal error.
Also, this directive will not compile the referenced module. Any module that needs to be
compiled or re-compiled, needs to be done so separately.

As an example, assume the following definitional and schema modules have been previously
compiled.

DEFINITION MODULE Bank_Def IS
DOMAIN Customer.name_domain IS NEW SQLCHAR(1ength => 50);

END BankDe f;

WITH BankDef;
USE Bank-Def;
SCHEMA MODULE BankDB IS

26 Intermetrics, Inc.

Chapt 5 - BUdna Ad,,/SQ Inwfaces With SAWeDL

END BankDB;

Then the following Abstract module would have full visibility to both modules using the
reference directive:

-- Rlference bank_.ef
-- Reference bankdb
WITH BankDef;
USE BankDef;
ABSTRACT MODULE BankActions IS

AUTHORIZATION BankDB

END Bankactions;

5..2 Owner Directive

The owner directive enables you to specify the Informix owner of a particular set of database
tables. The owner directive must precede a schema module declaration and affects that schema
module in the following way: the ownername specified in the directive is considered to be the
name of the Informix owner of the database tables defined in the schema module. Each owner
directive applies only to the next schema module declaration in the SAMeDL source code. If no
owner is specified for a particular schema module, then the owner is assumed (by Informix) to be
the user-name of the account from which the application is being run at the time of connection to
the database server.

The format of the owner directive is as follows:

-lowner owner_name

The keyword owner must begin immediately following the ! and the entire word must be
included. The keyword is case-insensitive.

Note: This directive must be placed outside of any module declaration; placing it between the
start of a module declaration and the corresponding END will cause a fatal error. The most
logical place to put the directive is directly before a schema module declaration, as shown below.

As an example, use of the Owner Directive, as exhibited below, would cause the resulting Ada-
• Informix application to access the table myuserid.Cust, owned by user myuserid:

-- [Owner myuserid
WITH Bank-.Def;
USE Bank_Def;
SCHDEA MODULE BankDB IS

TABLE Cust IS -- Basic customer information
Name Customer_name_domain,L SSN SSN_domain,

Intermetrics, Inc. 27

SAMeDL Development Environment - User Manual

Street-addr : Addr-domain,
City-addr : Addr-domain,
Stateaddr : Statezdcmain

END Cust;
END BankDB;

WITH BankDef;
USE BankDef;
ABSTRACT MODULE BankActions IS

AUTHORIZATION BankDB

PROCEDURE Getcustomer-profile (SSNIN SSNdomain) IS
SELECT *

INTO Customer-profile : customer_record
FROM BankDB.Cust
WHERE SSN = SSN-in;

END Bankactions;

Note: Successful use of the Owner Directive requires that the resulting Ada-DBMS application
be run from an account which has been granted the appropriate privileges for all referenced
tables. Refer to the Informix user's guides [Informix] for more information on privileges and
owners.

28 InteVmelrics, Inc.

Chapter 6 - Implementadon Dependent Features

Chapter 6 Implementation Dependent Features

This chapter describes SAMeDL features which are dependent on the Informix implementation.
Section 6.1 describes features which are included as part of the SAMeDL language ([LRM]) but
not supported due to limitations imposed by Informix. Section 6.2 details features which are not
included as part of the SAMeDL but are provided as extensions for the implementation either
because of necessity or convenience. Finally, Section 6.3 includes some solutions to system
errors that are commonly encountered.

6.1 SAMeDL Language Limitations Under Informix

Because of limitations imposed by Informix, use of the following features described in the
SAMeDL Language Reference Manual ([LRM]) will produce errors (all references below are
made with respect to [LRM]):

I. Queries with the UNION operator - in Section 5.4, the query term and query
expression arguments to the UNION operator can both be parenthesized, in accordance
with the grammar of SQL. Informix does not support the use of parenthesized
expressions as operands to the UNION operator, so an error will be produced by
Informix during the precompilation of the embedded C/ESQL if this feature of
SAMeDL is used.

2. WHERE Clauses - The SAMeDL language, in accordance with the ANSI SQL
Standard, allows input references to be part of value expressions, regardless of whether
or not the input reference is to a null-bearing parameter. However, Informix does not
allow null-bearing input references to be part of where clauses or appear in cursors.
The SAMeDL compiler will issue an error if a null-bearing parameter is used in a place
where Informix does not allow it.

6.2 SAMeDL Extensions For Informix

This section details features which are included as part of SAMeDL as implementation-specific
extensions either because of necessity or convenience. They include the following statements:

Connect Statement

The connect_statement is an extended statement. It's grammar consists of the following
productions:

connectstatement ::= connect database.name;

databasename character_literal
constant_reference

The Connect Statement connects the application to the Informix database named database name.
The user running the application must have Connect privileges for the given database. All
subsequent transactions are performed on the connected database, until a new Connect statement
is issued. No SAMeDL-generated application interface can access Informix data without
successful connection to an Informix database.

Because the Connect statement is an extended statement, its containing procedure and abstract
module must also be marked as extended.

Intermetrics, Inc. 29

SAMeDL Development Environment - User Manual

Definitional Module Bodies

The SAMeDL Compiler generates a package body for each definitional module. This practice
differs from the recommendation of the SAMeDL LRM, but is maintained in order to decrease
code size and functional redundancy.

The package body for each definitional module is empty unless the definitional module contains
a domain declaration of data class enumeration possessing a user-defined database mapping as a
value for the predefined parameter MAP. For each declaration of this type, a function to perform
conversion from the domain type to the underlying database type is provided. A function to
convert from the database type to the domain type is also provided. Without these globally
accessible functions, a large amount of code would have to be reproduced frequently in the
Abstract Module's package body in order to perform data conversions.

These functions can be accessed by the SAMeDL application, but are primarily designed for use
by the SAMeDL compiler back-end to generate package bodies for Abstract Modules.

6.3 Troubleshooting Common System Errors

The following list includes some helpful techniques for configuring the SAMeDL environment
that will reduce your chances of getting some common system errors.

1. Increase the MAXUMEM Interactive Unix kernel parameter - If you get an
Informix error message when running your application that indicates that your
application process does not have enough memory available to run successfully, then
you should increase the MAXUMEM kernel parameter. Consult your Unix system
administrator for instructions.

2. Increase the Interactive Unix ULIMrr kernel parameter - If you get an Alsys error
message during the LISTING phase of compiling your application, then you might try
raising the ULIMIT kernel parameter to increase the file size limit. Consult your Unix
system administrator for instructions.

30 Interme'rics, Inc.

Chatat 7 - Tool Lknindtna

Chapter 7 Tool Limitations

This chapter lists limitations of SDE.

7.1 SAMeDL Compiler Limitations

The following limitations are imposed by the SAMeDL compiler:

* The maximum number of characters allowed in a source line is 255.

* The compiler will not delete any files from an SDE library; the sde.purge command
must be used to clean the library of any out of date or temporary files.

* The maximum length of an Error Message that can be printed by the
Process_DatabaseError routine is 132 characters.

* If extremely long names are used in the SAMeDL source code, it is possible that the
compiler could attempt to generate output with lines that exceed the Unix line length
limit. The SAMeDL compiler will issue a warning if excessive name length results in
an output problem.

* The value range for types Smallint and IndicatorType is -32768.. 32767.

* The value range for types Int and SqlcodeType is -2147483648 .. 2147483647.

* The value range for type Real is the range for Alsys' LONGFLOAT type.

In addition, because Ada source is generated by the SAMeDL compiler, all restrictions and
semantics as outlined in [Ada] and [AdaRefi must be followed. Although these limits are not
explicitly checked by the SAMeDL compiler, they do indirectly affect the structure of what
normally would be legal SAMeDL code.

7.2 SDE Module Manager Limitations

The following limitations are imposed by the SDE Module Manager:

1. The SDE commands (with the exception of sde.purge) will not delete any files from an
SDE library; the sde.purge command must be used to clean the library of any out of
date or temporary files.

2. After executing the sde.purge command, you may not restore the library to its prior
state.

Intermerrics, Inc. 31

Chapter 8- SDE Command Reference Manual Pages

Chapter 8 SDE Command Reference Manual Pages
1This chapter contains a reference guide for each of the commands in SDE. The commands
available to you are:

samedl invoke the SAMeDL compiler
sde.deanlib reinitialize an SDE library
sde.creatar create a library archive file for compiled concrete modules
sde.creatlib create an SDE library
sde.is list compiled SAMeDL modules
sde.mkscript generate an Ada compilation script file for an interface file
sde.purge remove out of date files from an SDE library
sde.rm remove a SAMeDL module from an SDE library
sde.rmiib remove an SDE library

I

I

i.

L

b.

* lntermetric$, Inc. 33

SAMeDL Development Environment - User Manual

8.1 samedl

Command

samedl - invoke the SAMeDL compiler

Syntax

samedl [options] source_file

Options

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

-list Generate an interleaved listing file

-syntax Check the syntax of the input file without
generating any output files.

Description

samedi exec,3tes the SAMeDL compiler and compiles the named SAMeDL source file into the
SDE library directory specified by pathname; if pathname is not specified, then it will default to
the current working directory. The SAMeDL source file name must end with the suffix .sme.

The listing option, when specified, directs the compiler to produce an interleaved listing file.
The listing file will be named <x>.lis where <x> is the base name of the input source file (for
example, a source file named xyz.sme will result in a listing file being named xyzlis). Compiler
diagnostic messages will always be written to standard output, regardless of whether or not -list
is in effect.

The SAMeDL compiler will generate interface files for each definition module (in the form of an
Ada package specification/body pair) and each abstract module (in the form of a layered
interface consisting of an Ada package specification/body pair and an object code file generated
from a C with embedded SQL file). No interface files are generated for schema modules. All
interface files will be placed in the SAMeDL library contained within the library directory.

Before using the compiler, the environment variable INFORMIXDIR must be properly set to
contain the path name to the Informix RDBMS installation directory (e.g., /usr/informix).

34 Inmrerics., Inc.

Chapter 8 - SDE Command Reference Manual Pages

Module Type File Name Description

Definitional Module D_xxxxx.sme Text file containing SAMeDL source code
representing the definitional module

P_xxxxx_.a Generated Ada package specification file

B_xxxxx.a Generated Ada package body file

Schema Module Sxxxxx.sme Text file containing SAMeDL source code
representing the schema module

Abstract Module Axxxxx.sme Text file containing SAMeDL source code
representing the abstract module

P_xxxxx_.a Generated Ada package specification file

B_xxxxx.a Generated Ada package body file

E_xxxxx.ec Generated C w/ embedded SQL (C/ESQL)
file

E_xxxxx.o Object code for the expanded/compiled
C/ESQL file

where xxxxx denotes a unique integer.

Diagnostics

The diagnostics produced by the SAMeDL compiler are intended to be self-explanatory.

I.

I ntermetrics, Inc. 35

SAMeDL Development Environment - User Man• l

8.2 sde.cleanlib

Command

sde.cleanlib - reinitialize a SDE library

Syntax

sde.deanlib [pathname]

Description

sde.cleanlib will empty an existing SDE library of all compilation information. The command
will re-initialize the names.dbe and samedl.dat files and remove the remaining contents of the
samedl.lib directory from the directory specified by pathname; if pathname is not specified, then
it will default to the current working directory.

Examples

The following sequence of commands cleans and re-initializes the library contained in the
directory /homne/samedl.

%cd /home/samedl
%sde. cleanlib

The following command does the same thing:

%sde.cleanlib /home/samedl

Diagnostics

An error is reported and no action is taken if pathname does not specify a valid, unlocked SDE
library.

36 lnrmerics, Inc.

Chapter 8 - SDE Command Reference Manual Pa es

8.3 sde.creatar

Command

sde.creatar - create a library archive file for compiled concrete modules

Syntax

sde.creatar [options] archivename module-name ...

Options

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

Description

For each SAMeDL abstract module specified by module name, sde.creatar will add (or
replace) the object code file representing the related concrete module into the library archive file
denoted by archive name. The library archive file may already exist, or in the event that it does
not exist, a new one-will be created. sde.creatar is analogous to the following UNIX command:

tar r archive_name c__modulenamel.o -

See ar(1) in the UNIX Programmer's Manual.

Examples

The following example adds the concrete modules associated with the SAMeDL abstract
modules absl and abs2 (assume they are E 1.o and E 2.o respectively) from the library
/usr/home/jdoe/mylib to the archive file my archive in the current working directory.

tsde.creatar -lib /usr/home/jdoe/my-lib myarchive absl abs2

Assuming that my archive was previously empty or did not exist, then issuing the UNIX
command ar with tihe table of contents (t) option will yield the following results:

tar t ./Imy_archive
E_1.o
E_2.o

Diagnostics

An error is reported and no action is taken if module name is not an abstract module or does not
exist in the library, or if the library is not valid or is locked.

Imnermneics, Inc. 37

SAMeDL Dev.ekpnent Eliromniue - Usr Manali

8.4 sde.creatlib

Command

sde.creatlib - create an SDE library

Syntax

sde.creatlib [pathname]

Description

sde.creatlib creates and initializes a new SDE library. It creates a directory named samedl.lib
for the library in the directory specified by pathname. If pathname is not given, the current
working directory is the default.

The command creates the files samedL.dat and names.dbe in the samedl.lib directory and sets
the their information fields to an initial state.

Examples

The following sequence of commands creates a new SDE module manager library in the
directory /home/samedl.

%cd /home/samedl
%sde. creatlib

The following command does the same thing:

%sde.creatlib /home/smaedl

Diagnostics

An error is generated and no action is taken if pathname is not an existing directory or if the
directory already contains an SDE library.

38 Intfemelics, Inc.

Chapter 8 - SDE Command Reference Manual Pages

8.5

Command

sde.ls - list compiled SAMeDL modules

Syntax

sde.Is [options] [module_name] ...

Options

-ada only List only generated Ada interface files

-interface List all generated interface files

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

-verbose List file, file type, library entry date, source file
name, and library file name.

Description

sde.Is provides a list of the SAMeDL modules compiled in the specified SDE library denoted by
pathname (or the current working directory if pathname is not given). Options are provided to
give more or less extensive information.

Specifying one or more module names gives information only on those modules; otherwise
information for all modules in the library will be listed.

The options -ada only and -interface are mutually exclusive. If both are specified, then -
interface will be in effect.

Examples

The following command lists all (verbose) information for the modules absl and abs2 and their
* generated interface files from the library in the current working directory.

tsde.ls -v -i absl abs2

absi
Unit Kind: ABSMODULE
Source File: absl.sme• ~Library File: ./samedl. lib/A_, sate
Time Entered: Feb 24 1992 11:59
interface Files:

./samedl.lib/P_2_.a (ADASPEC)

. /samedl.lib/B_2 .a (ADABODY)

./samedl .lib/E_1 .ec (DMBEDDEDC)
,./samedl. lib/E_1 .o (OBJECTFILE)

SInametrics, Inc. 39

sAmeD Devetoprmen Environment - User Manual

abs2
Unit Kind: ABSMODULE
Source File: abs2.sme
Library File: ./samedl.lib/A_2.sme
Time Entered: Feb 24 1992 12:00
Interface Files:

./samedl.lib/P_3_,a (ADASPEC)
./samedl. lib/B_3 .a (ADABODY)
./samedl.lib/E_2..ec (E4BEDDEDC)
./samedl. lib/E2 .o (OBJECTFILE)

Diagnostics

An error is reported and no action is taken if module-name does not exist in the library, or if the
library is not valid or is locked.

40 inWtmetric, inc.

Chapter 8 - SDE Command Reference Manual Pages

8.6 sde.mkscript

Command

sde.mkscript - generate an Ada compilation script file for an interface file

Syntax

sde.mkscript [options] modulename ...

Options

-library pathnwne Operate in the SDE library pathname. If not
specified, will default to current working
directory

-output filename Place the generated script template into filename

Description

sde.mkscript will create a template for performing the Ada compilation of the generated Ada
files (and the units they depend on) for the definitional or abstract module(s) specified.

Examples

* Suppose in the library /usr/bome/jdoe/my Jib you have compiled the abstract module my abs
which depends (WITHs) the schema module my sch and the definitional module my def;
my sch depends only on my,.def and mydef depnds on no modules. Performing an ide.is
command gives the following information:

%sde.ls -v -a -1 /usr/home/jdoe/mylib my_abs mydef my-sch

[my-abs
Unit Kind: ABSMODULE
Source File: input.sme
Library File: /usr/home/jdoe/my_lib/samedl.lib/A_l .sme
Time Entered: Feb 24 1992 11:59
Interface Files:

/usr/home/jdoe/my-lib/samedl.lib/P_2_.a (ADASPEC)
/usr/home/jdoe/my-lib/samedl. lib/B2 .a (ADABO6Y)

my-def
Unit Kind: DEFMODULE
Source File: input.sme
Library File: /usr/home/jdoe/my-lib/samedl. lib/D_1. sine
Time Entered: Feb 24 1992 11:59
Interface Files:

Iusr/home/jdo.Ilmy.lib/samedl .lib/P.1_.a (ADASPEC)

/usr/home/jdoe/my-lib/samedl. lib/B_l.a (ADABODY)

Ie I

L nemtis n.4

SA.MeDL Develoment Evbmnaent - User Manual

mysch
Unit Kind: SCHENAMODULE
Source File: input.uie
Library File: /usr/home/jdoe/myllib/samedl. lib/S_.1 sine
Time Entered: Feb 24 1992 11:59

You may issue a sde.mkscript command to generate an Ada compilation template for compiling
the Ada interface files associated with my abs as follows:

%sde.mkscript -1 /usr/home/jdoe/my-lib -o my-script my-abs
%more my_script
Compile (Source => °/usr/same/example/samelib/samedl.lib/P_1_.a°);
Compile (Source => °/usr/same/example/samelib/samedl. lib/B_l.a°);
Compile (Source => "/usr/same/example/samelib/samedl.lib/P_2_.am);
Compile (Source => °/usr/same/example/samelib/samedl. lib/B_2 .a);
Compile (Source => °/usr/same/exauple/samelib/samedl.lib/P_3_.a°);
Compile (Source => °/usr/same/example/samelib/samedl.lib/B_3 .a°);

Diagnostics

An error is reported and no action is taken if module name is not an abstract or definitional
module or does not exist in the library, or if the library i's not valid or is locked.

42 Inrm"erics, Inc.

Chapter 8 - SDE Command Reference Manual Pages

8.7 sde.purge

Command

sde.purge - remove out of date/unused files from an SDE library

Syntax

sde.purge [pathname]

Description

sde.purge will empty an existing SDE library of all obsolete or unused files. The command will
remove all out of date (due to recompilation for example) or unused files (compiler temporary
files or files associated with modules that have been removed via sde.rm) along with the library
state backup file samedl.datback in the samedl.lib directory from the library associated with
pathname; if pathname is not specified, then the SDE library will default to the curet working
directory.

Note that, because sde.purge removes the library state backup file samedl.dat.back, an SDE
library may not be restored back to its prior state once a purge is performed. Normally, library
restoration would be accomplished by renaming the samedl.dat.back file to samedLdat in the
samedl.lib directory for the library. For example:

%cd pathname/samedl.lib
£ %1s samedl.dat*

samedl .dat samedl .dat.back
%rm samedl.dat
%mv samedl.dat.back samedl.dat

Examples

The following sequence of commands purges the library contained in the directory
/home/sanedl.

%cd /home/samedl
%sde.purge

The following command does the same thing:

%sde.purge /home/samedl

L Diagnostics

An error is reported and no action is taken if pathname does not specify a valid, unlocked SDE
library.

LII
I nse rmeri cx, Inc. 43

SAMeDL Deyeklpwnt &Wimonent - User Manmal

8.8 sde.rm

Command

sde.rm - remove a SAMeDL module from a library

Syntax

sde.rm [options] modulename ...

Options

-force Suppress the confirmation prompt and force
deletion

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

Description

sde.rm removes all information and related interface files associated with the named module(s).

Unless the -force option is specified, the user will be issued a confirmation prompt for each
module to be removed. The user may respond with a y (or Y) if the module should be deleted;
any other response will result in the module being retained.

Examples

The following sequence of commands removes the unit abstract mod from the SDE library
present in the directory /homelsamedl.

%cd /home/samedl
tsde.rm abst ract mod

sde.rm: Delete ABSMODULE abstract_mod? [1N]: y

The following command does the same thing but eliminates the confirmation prompt:

%sde.rm -1 /home/samedl -f abstractpod

Diagnostics

An error is reported and no action is taken if module_name does not exist in the library, or if the
library is not valid or is locked.

44 Intermetrics, Inc.

Chapter 8 - SDE Command Reference Manual Pages

8.9 sde.rmlib

Command

sde.rmlib - remove an SDE library

Syntax

sde.rmlib [pathname]

Description

sde.rmlib removes all information in the SDE library in the directory specified by pathname
(the current directory is the default). It deletes all the files in the SDE library directory
samedl.Iib, and then removes the directory.

The user will be issued a confirmation prompt. The user may respond with a y (or Y) if the
library should be deleted; any other response will abort the command and retain the library
unchanged.

Examples

The following sequence of commands removes the SDE library present in the directory
/homelsamedl.

%cd /home/samedl
%sde.rmlib

sde.rmlib: Delete ./samedl.lib? [NJ: y

The following command does the same thing:

[%sde.rmlib /home/samedl

sde.rmlib: Delete /home/samedl/samedl.lib? IN]: y

Diagnostics
I

An error is reported and no action is taken if the library is not valid or is locked.

LU.
L
L neneris n.4

Index

samedldat 6, 8
Index samedLdaLback 6, 9

samedLlib 7, 10, 11, 24

samedl.lock 10-11
2Asamedl.tmp 11

SDE library 5, 6, 7-11, 13, 23
Ada application program 17-22, 24-25 sde.cleanlib 6, 8, 36
Ada package file 5, 6, 16, 17, 23, 24 sde.creatar 6, 17, 37

sde.creatlib 6, 8, 13, 24, 38
C sde.ls 6, 16, 39-40
C file 11 sde.mkscript 6, 17, 4142
CIESQL file S, 6, 11, 16, 23, 24 sde.purge 6, 31, 43
Corn file 11 sde.rm 6, 44
Common errors 30 sde.rmlib 45
Compiler directive 25-28 Separate compilation 5, 23, 26-27
Connect statement 29 Syntax conventions 2
Context clause 5
Creating a database 13 T
Creating an SDE library 6, 8, 13-14, 24, 38 Tool limitations 31

D
Database connection 15, 27, 29
Document references 2-3

i I
* Implementation dependent features 29-30

INFORMDCDIR 14,24
* Interface files 5, 6, 10, 16, 23, 24

L
Language limitations 29
Library locking 10-11

M
Module 5, 10
Module manager 6

N
names.dbe 6, 9

0
Object code file 5, 6, 11, 16, 23, 24
Owner directive 27-28

R
Reference directive 26-27
Restoring an SDE library 9, 31, 43

S
SAMeDL compiler 5,14-17,23-28,34-35
SAMeDL extensions 29-30
SAMeDL standard packages 11, 17

Intermetrics, Inc. 47

